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SUMMARY

Quantifying uncertainty associated with our models is the only way we can ex-
press how much we know about any phenomenon. Incomplete consideration of
model-based uncertainties can lead to overstated conclusions with real-world im-
pacts in diverse spheres, including conservation, epidemiology, climate science,
and policy. Despite these potentially damaging consequences, we still know little
about how different fields quantify and report uncertainty. We introduce the
‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of
model-related uncertainty quantification from seven scientific fields, spanning
the biological, physical, and political sciences. Our interdisciplinary audit shows
no field fully considers all possible sources of uncertainty, but each has its own
best practices alongside shared outstanding challenges. We make ten easy-to-
implement recommendations to improve the consistency, completeness, and
clarity of reporting on model-related uncertainty. These recommendations serve
as a guide to best practices across scientific fields and expand our toolbox for
high-quality research.

INTRODUCTION

Uncertainty is a well-acknowledged, fundamental part of the scientific process.1–5 Uncertainty in scientific

work can take myriad forms and is generated from a wide variety of sources. No universal taxonomy of un-

certainty exists,6 despite many efforts to classify and categorize the diverse sources and forms of scientific

uncertainty.3,7–12 Generally, these taxonomies of uncertainty encompass three broad categories; uncer-

tainty from natural randomness or variability in a system or process (aleatoric uncertainty), uncertainty in

our knowledge of a system (including but not limited to; uncertainty in model structure, measurement

and sampling errors, uncertainty in values of parameters), and uncertainty in our language, communication,

and interpretation of processes. All of these sources are important contributors to scientific uncertainty,

however, they cannot all be either quantified or reduced. In this article, we focus on the second category,

uncertainty in a system or process, refining further to concentrate on quantifiable uncertainty associated

with the use of statistical or mathematical models (model-related uncertainty).

The importance of uncertainty associated with the results of statistical and mathematical models is

increasingly recognized because of prominent work in fields such as Climate Change3,13 and Epidemi-

ology.14–17 Nevertheless, quantification of model-related uncertainty and its reporting is not consistent

or complete2,16 within3,5,16,18 or between scientific fields.1,19,20 Despite similarities in descriptions of

model-related uncertainty,3,8,12,21 a fully coherent picture has not emerged and different papers use
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Box 1. Example of source framework

Focal model: a simple linear regression of change in height of plants as a function of temperature.

Model equation: DHi = b0 + b1Temp + εi

εi = N
�
0;s2

�

Source Element in the focal model Example of potential uncertainty

Response variable Change in height (DH) Measurement/observation error

Explanatory variable Temperature (Temp) Measurement/observation error

Parameter estimates Estimates of: Intercept (bb0),

slope of relationship (bb1), and

variance of the error (bs2)

SE/confidence interval

Model structure The structure of the equation Comparison of alternative formulations

e.g. non-linear structure or additional

explanatory variables

Sciences, University of
Colorado Boulder, Boulder,
CO 80309-0311, USA

11Peace Research Institute
Oslo (PRIO), Oslo, Østlandet
0186, Norway

12KU Leuven, 3000 Leuven,
Belgium

13Observatorio Marino de
Asturias (OMA),
Departamento de Biologı́a
de Organismos y Sistemas,
University of Oviedo, 33071
Oviedo, Spain

14Department of
Mathematics and Statistics,
University of Strathclyde,
Glasgow, Lanarkshire G1
1XH, UK

15Federal Institute of
Hydrology, Department of
Microbial Ecology, Am
Mainzer Tor 1, 56068
Koblenz, Germany

16Faculty of Environment,
Science and Economy,
University of Exeter, Exeter,
Devon EX4 4SB, UK

17Met Office, Exeter Devon
EX1 3PB, UK

18Department of Political
Science, University of Oslo,
Oslo, Østlandet 0317,
Norway

19Schweizerisches Epilepsie
Zentrum, Klinik Lengg, Zürich
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different taxonomies of uncertainty and focus on different sources. There have been several calls for

more consideration of uncertainty from specific fields or pairs of fields.1,3,5,20 But these have yet to be

answered comprehensively. Other fields, such as Engineering and Meteorology, have well-established

practices to deal with uncertainty. There are also some cross-disciplinary standards for specific uncer-

tainty types, for example, measurement uncertainty through the International Standards Organisation,42

but even these standards can be too specific to be broadly applicable for cases of complex models.12

This inconsistency can lead to confusion as to the true level of uncertainty in results and hinder interpret-

ability across fields.

With quantitative science now highly influential in the public sphere3 and the results from models trans-

lating into action, wemust support our conclusions with sufficient rigor. Incomplete consideration of model

uncertainties can lead to false conclusions with real-world impacts and an erosion of public trust in sci-

ence.16,18,22 In 2019, Seibold et al.23 reported substantial declines in insect populations in Germany. This

finding was widely publicized as an ‘‘insect Armageddon.’’24 However, recent work by Daskalova et al.18

showed that a failure to account for uncertainty in model structure inflated confidence in the estimated de-

clines. Only one of the five reported arthropod declines remained clear after uncertainty was corrected.18 In

2020, epidemiological models were at the forefront of strategies related to COVID-19. An over-reliance on

communicating point estimates/predictions masked the full range of possible outcomes and potentially

contributed to rushed, delayed, and inappropriate policy decisions and government action.16,17,22 Indeed,

inquiries into the science of COVID-19 have now begun, with scientific papers considering the role of math-

ematical models used for policy decisions.25

All potential sources of uncertainty should be considered and accounted for when constructing, running,

and interpreting statistical and mathematical models. The framework we use for our audit breaks model-

related uncertainty into three primary sources: data (both observed and simulated), parameters, andmodel

structure. The data element is further split into two sub-sources: the response, i.e. the focal variable trying

to be explained, and the explanatory variables, i.e. any variables used to explain the response. This gives

four sources in total to assess. An example of the framework as applied to a simple linear regression is given

in Box 1. This ‘‘source framework’’ is broad enough to be applicable to multiple scientific fields, while still

capturing the main sources of model-related uncertainty.

Previous work has suggested that our current consideration of model-related uncertainty in the sciences is

not sufficient,1–3,5,18 but the actual state of quantification and reporting in publications has not been as-

sessed. To address this, we take a snapshot of the state of model-related uncertainty reporting from papers

published at the end of 2019 across seven scientific fields (papers assessed: N = 545, papers remaining in

analysis: N = 66 for Climate Science, 91 for Ecology, 56 for Evolution, 34 for Health Science, 89 for Neuro-

science, 58 for Oceanography, and 93 for Political Science, Total = 480) to evaluate how they quantify and
2 iScience 25, 105512, December 22, 2022



Figure 1. Heatmap of the percentage of papers that report uncertainty from each source split by field

Positive results include papers that quantified and reported uncertainty arising from each source, when uncertainty was

applicable. Cases, where no uncertainty was present in a source, were removed. Only one focal model was considered per

paper assessed. (N = 66 for Climate Science, 89 for Ecology, 55 for Evolution, 33 for Health Science, 88 for Neuroscience,

38 for Oceanography, and 81 for Political Science).
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report model uncertainty in the key sources outlined above. These fields were chosen to represent a range

of scientific disciplines that span broad subject areas (biological, physical, and one social science) but all

have applied outcomes. Final field choice was determined by the collaborative network available to the

lead author and those authors that had time to complete the systematic audit. Papers for each field

were chosen by taking all original research papers from two field representative journals per discipline

from the end of 2019 (further details are available in the STAR Methods in the supplementary files).

HOW WELL ARE WE CURRENTLY DOING?

The results of our snapshot assessment show that no field currently has a complete and consistent consid-

eration of their model uncertainties (see Figure 1). However, across fields we get much closer to achieving

this, offering opportunities for improvement; all four sources of uncertainty are quantified in at least 20% of

instances within at least one field, with three sources having 50% or greater quantification in at least one

field. Fields with low reporting of particular sources of uncertainty can learn from fields with high reporting

of those sources. The one area where all fields fail to quantify uncertainty the majority of the time is from

explanatory variables. The fields that perform best here are Oceanography and Climate Science, each re-

porting uncertainty in just under one-quarter of papers assessed.

We note that not all lack of quantification or reporting of uncertainty in a particular source represents an

omission. There are some cases where quantifying uncertainty from a particular source is implausible,

impractical, or unnecessary. Quantifying the uncertainty associated with a particular source may be implau-

sible when the existence of error/bias/missing variables is totally unknown, or if this would necessitate

investigation of all possible permutations of model. Examples of impracticality include huge models

that would take an unfeasibly long time to run with quantified uncertainty and would be too complex to

interpret meaningfully, or when modeling the uncertainty would require many assumptions due to a lack

of knowledge about the true form of bias or error in the data. This is not uncommonly seen in some social

science fields, where ambiguous data may mean that it is not possible to know if data are truthful.26–28 In

this case, uncertainty is known to be present in the input data of a model, but the exact form is totally un-

known and therefore cannot be practically modeled without multiple assumptions. Ultimately, these as-

sumptions may be more subjective and add greater uncertainty than analyzing the data at hand. In these
iScience 25, 105512, December 22, 2022 3
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Box 2. Good practice guidelines for all models types including case study implementation for each uncertainty source as identified during our
assessment for statistical models

Good practice common to all model types:
� Compare, contrast, or represent (through averaging of parameter estimates) the results of alternative model structures

� Discuss any uncertainty sources that were not quantified explicitly in the main text or discussion section and, explain why and detail how this could

impact the results and conclusions of the analysis. Include a dedicated ‘‘uncertainty’’ section of the paper (possibly in supplemental information)

� Publish code and/or data/model output used for the analyses to ensure work is reproducible and reusable

Statistical model good practice:
� Quantify any error in the response data. This can be in the form of explicit modeling of measurement/observation error and subsequent correction,

correction for non-independence, or an estimation of the error/bias that is propagated into the focal model

� Quantify any error in the explanatory variable data. This can be in the form of explicit modeling of measurement/observation error (using existing

standards, e.g. those from the International Standards Organisation,42 where possible) and subsequent correction, correction for non-indepen-

dence or confounding variables, an ensemble approach to represent multiple data sources, or an estimation of the error/bias that is propagated into

the focal model. If explanatory variable data comes from another model output (as is the case for projections of future climate) the full uncertainty

associated with this output should be propagated into the focal model

� Present error estimates or an interval representing the plausible parameter space for all unknown parameters. This could be as a confidence interval,

credible interval, bootstrap interval, or standard errors.

Dynamical model good practice:
� Quantify any uncertainty entering the model from the response, if necessary (i.e. when the response is not a predicted outcome of the model and the

aim of the model is quantitative understanding). This can be in the form of reporting model parameters (e.g. probability of detection) or statistics such

as repeatability

� Quantify any relevant uncertainty in the explanatory variable data. This can be realized by running model ensembles with perturbed fields of the

explanatory variables (i.e model forcing or initial conditions in most cases) with the strongest influence on the studied response

� While assessing uncertainty in all parameters in a dynamical model can be unfeasible (especially for data-intensive modeling such as climate science or

oceanography), parameter uncertainty can be quantified similarly to that of explanatory variables by running model ensembles covering a range of

possible values for the parameters in those equations with the strongest influence on the studied response

� In addition, for both uncertainties in explanatory variables and parameters, simplified versions of the models could be used for more comprehensive

uncertainty analysis. Although the uncertainty quantified via such an approach would not be identical to that of the original more complex model, it

would provide a dependable estimate

Theoretical model good practice:
� Check if it is necessary to quantify uncertainty in the response. Quantify any uncertainty in the response data. Typically, a response in a theoretical

model will be the outcome of the model rather than an input and is therefore predicted. The response in this case is not strictly a source of uncer-

tainty but it does accumulate uncertainty from all other sources. Therefore, to correctly represent uncertainty in the response, it is necessary to present

the response accounting for the uncertainty introduced from all other sources. This can be in the form of presenting intervals around predicted

response values, presenting a distribution of response values, or a range or other summary statistics that include variability of the results. May not have

uncertainty if it is a deterministic model.

� Quantify any relevant uncertainty in the explanatory variable data. Explanatory variable data can either come from observations, experiments, or be

simulated as part of the model. Each form of the explanatory variable is a source of uncertainty in a different way. This uncertainty can be quantified

using measurement/observation error modeling, choosing a range of values/sampling values from a distribution during a simulation or bootstrap-

ping, or sensitivity analyses to assess the impact of changes in explanatory variable values.

� Parameter values in theoretical models are often chosen a priori or optimized using various algorithms. Often parameters are chosen specifically

based on previous scientific findings, from observed data, from knowledge of physical or chemical processes, or to test a specific theory. Uncer-

tainty in these parameters should be quantified by choosing a range of values/sampling values from a distribution during a simulation or boot-

strapping or sensitivity analyses to assess the impact of changes in explanatory variable values. In some cases, there will be no uncertainty added from

the unknown parameters because the question being asked is dependent on specific parameter values, for example, does an increase of 1�C in mean

sea surface temperatures cause greater carbon drawdown into food webs? In this case, the temperature parameters would need to be fixed and

therefore would not be a source of uncertainty.

� Compare, contrast, or represent (through averaging of parameter estimates) the results of alternative model structures. This is not always relevant in

theoretical models when they test if a specific model structure can produce the outcome expected. This is because the aim of many theoretical models
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is to test the model structure specifically. However, in other cases, where the motivation is simply to find a model that can represent reality, infinite

different options could be available and some consideration of this breadth should be included.

Cross-disciplinary example implementations for statistical models:

Field

Source of uncertainty and

quantification metric Citation Details

Evolution Response variable: Measurement error Conith et al.43 Response: Conith et al.43 conducted a comparative analysis of the

evolutionary history of snout length and depth for cichlid fish. They

corrected their response variables of snout length and depth using a

theoretically expected variance-covariance matrix of correlation

among traits which controls for non-independence from shared

evolutionary history and taking account of the body depth of each

specimen. This produced a ‘‘corrected’’ response variable that was

independent of size and history, thus resolving uncertainty in what

morphological or evolutionary processes this variable represents.

example of correction for non-independence

Oceanography Explanatory variable: Measurement error Saderne et al.44 Explanatory: Saderne et al.44 used a mechanistic model to explore

differences in the CO2 system across three ecosystems (coral reefs,

mangroves, and seagrass meadows). One explanatory variable was pH

on the total scale. This variable was corrected using extra data

collected using a different method and the corrected variable was used

in further analyses. Other input data elements (which were used as

parameters in the final model) had their errors propagated using the R

package Seacarb.45 This allowed for instrument errors to be accounted

for throughout the analysis. These techniques for considering and

accounting for errors in explanatory variables can and should be

applied across statistical models as well.

example of correction for measurement/observation error

Political Science Parameter estimates: Interval O’Grady46 Parameters: O’Grady46 modeled preferences for increases in federal

social spending with explanatory variables of household income and

subjective assessment of unemployment risk. The model used was a

multivariate regression. Uncertainty in the parameter estimates from

this regression was calculated using standard errors and presented as

clustered standard errors numerically in Table 146 and then as 95%

confidence intervals around the coefficient estimate visually in

Figure 5.46

example of error estimates using standard errors

Climate Science Model structure: Model comparison Fan et al.47 Model structure: Fan et al.47 compared two different parameterizations

of a dynamical model for solar energy distribution and surface

hydrology over the Tibetan Plateau. The dynamical model was the

Community Climate System Model (CCSM4). One parameterization

used 3D radiative transfer and the other used plane-parallel radiative

transfer. The results of both parameterizations were compared visually

in figures, as text, and numerically. Consideration of different

processes and how they could impact results should also be

considered in statistical models.

example of comparing results using two model structures
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instances, discussion of the possible uncertainties and open acknowledgment of the limitations of the

model to address them would be necessary as detailed in our good practice guidelines in Box 2. One

example of a nuanced requirement to explicitly quantify uncertainty is for response data in statistical

models. Commonly applied statistical methods based on linear models, such as linear regression and

ANOVA, do account for uncertainty in the response when estimating uncertainty in parameter estimates.

However, they do not report it explicitly. Generally, this lack of reporting does not matter and would not
iScience 25, 105512, December 22, 2022 5



Figure 2. Distribution of different model types by uncertainty component and field

(A) Presentation of the percentage of models in which there was uncertainty reported, uncertainty missing, or no

applicable uncertainty for each source component (uncertainty was deemed not applicable if either the component was

not relevant to the model or if there was no uncertainty in that component). (N = 57 for dynamical models (including

mechanistic), 241 for statistical models, 12 for theoretical models or hybrid statistical/theoretical models).

(B) Percentage of model type assessed by field.
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influence results because it is the relationship between the explanatory variables and the response that is of

interest scientifically. In other situations, it is necessary to explicitly quantify uncertainty in the response of

statistical models. For example, the survival of wild animals is typically derived from capture-recapture

data, and its proper estimation requires explicit estimation of both the recapture process (observation)

and a survival process. There are also cases where no applicable uncertainty is introduced from particular

sources (see Figure 2). For example, in experimental studies, the explanatory variable is often a treatment

group. These treatment groups are rarely a source of uncertainty in the modeling process, as group mem-

bership and treatment conditions are often known with certainty. Large numbers of experimental studies

like this are present in Evolution and Health Sciences, and increasingly also in Political Science. A final

example to note is when explanatory variables with noise or measurement error are actually the variable

you want to represent such as in cases where explanatory variables are used for diagnosis or prognosis.

In this case, it is the observed values of the explanatory variable which will be used for clinical use rather

than the ‘‘true’’ values and representing the uncertainty between observations and true values would be

unnecessary.

Which sources of uncertainty were quantified and reported varied between fields but also by model type

(see Figure 2). We classified all models in the audited papers into three broad model types: dynamical (a

mathematical model based on the fundamental understanding of natural processes such as physical or

biochemical laws), statistical (a mathematical model that represents a data generation process, e.g. linear

regression), and theoretical (a mathematical model designed to illustrate or test a theoretical idea, typically

does not include observed data). Variation was found in how often uncertainty was quantified as well as
6 iScience 25, 105512, December 22, 2022



Table 1. Table of identified opportunities to improve uncertainty quantification and reporting, including details of the improvement

Identified opportunity Detail Exemplary fields Fields that can benefit

Greater consistency Use overarching source framework

to identify potential routes for

uncertainty to enter models, then

follow model-type-specific guidelines

of good practice for quantifying

and considering these sources

For statistical models: Ecology,

Evolution, Health Science,

Neuroscience, Political Science

For dynamical models:

Climate Science, Oceanography

For theoretical models: Ecology

Fields that use multiple

model types: Climate Science,

Ecology, Oceanography

Fields that are not yet as

consistent in reporting: All

More complete uncertainty

consideration

Share proposed good practice

methods for quantifying uncertainty

from different sources across model

types and fields. See our guidelines

and examples in Box 2.

Response: Climate Science,

Oceanography

Explanatory: Evolution, Oceanography

Parameters: Health Science,

Political Science

Model Structure: Political Science

All fields

Effective presentation Recommended minimum numeric

presentation to aid reproducibility

and reusability of results and reduce

ambiguity. Also recommend

combining with visual presentation

when feasible to aid interpretation.

Strong visual presenters: Climate

Science, Ecology, Evolution,

Neuroscience

Strong numeric presenters:

Climate Science, Ecology,

Oceanography, Political Science

Strong across all:

Health Science

All fields
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whether any uncertainty was applicable for each source across the model types (Figure 2A). While most

sources in our framework could contribute uncertainty to the majority of models, theoretical models

(including hybrid statistical/theoretical models) were more likely to have source components with no appli-

cable uncertainty. The differences in uncertainty relevance and quantification by model type align partially

with the boundaries of the scientific fields considered (see Figure 2B) as some fields focus more on dynam-

ical and mechanistic models (Climate Science and Oceanography), while others rely more on statistical

models (Health Science, Neuroscience, and Political Science), and some fields are more mixed (Ecology

and Evolution).

We suggest that differences in uncertainty quantification are driven by the differing perceived importance

of the sources of uncertainty for each model type and for specific research questions, as well as by practical

considerations. For example, parameter estimate uncertainty receives the most consistent acknowledg-

ment for statistical models. This is likely because a fundamental aim of statistical analyses and tools is to

estimate and draw inferences from unknown parameters, and common standards exist for quantifying their

uncertainty. In contrast, the aim of dynamical models is often to predict a response. In this case, uncertainty

in the response was quantified most consistently, representing its greater focal importance for this model

type in addition to the impracticality of quantifying uncertainty in the huge numbers of parameters and

explanatory variables in complex geoscientific models. Additional gaps in uncertainty quantification are

driven by the lack of tools or guidelines for quantification associated with particular model types and by

author omissions and trade-offs. We present below some opportunities to improve our practice based

on our interdisciplinary insight into these challenges.

CROSS-DISCIPLINARY COLLABORATION HIGHLIGHTS OPPORTUNITIES FOR

IMPROVEMENT

Working with a large interdisciplinary team and informed by the results of our assessment of current prac-

tices, we identified several opportunities for improvement, summarised in Table 1.

Greater consistency through a common framework

Achieving consistency in the quantification and reporting of model-related uncertainty across scientific

fields is a challenging aim. Cross-discipline harmony has been hindered by both the lack of a standardized

framework for considering model-related uncertainty and by field-specific vocabularies and different com-

positions of model types. Here we propose three complementary solutions which can help researchers
iScience 25, 105512, December 22, 2022 7
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address these challenges and produce easier cross-disciplinary comparisons. The first solution is a broad

framework and common language through which to consider model-related uncertainty. We propose the

use of our source framework as a tool to identify potential routes for uncertainty to enter the modeling pro-

cess before referring to model-type-specific criteria for quantifying or addressing those uncertainties. The

usability of this framework across different disciplines has already proven itself through our analysis. While

we have demonstrated the usefulness of our framework across a broad range of fields, our coverage of so-

cial sciences was limited to Political Science. However, we are confident that the broad nature of our frame-

work makes it applicable as a checklist for any quantitative model, regardless of discipline. For fields where

a substantial part of uncertainty in a piece of work is not quantitative or quantifiable, other additional cat-

egories or standards may be required to further align uncertainty consideration beyond model-related un-

certainty. The field of Engineering has already made substantial progress here, with specific methods avail-

able for the quantification of uncertainty in qualitative as well as quantitative data.12 While these additional

elements are beyond the scope of this current work, we strongly encouragemore research effort to create a

harmonized approach to all types of uncertainty and expanding further into the social sciences in particular

but retaining an interdisciplinary approach.

The second solution we propose is to follow cross-disciplinary good practice guidelines, which we present

in Box 2. Our audit notes that differences in model uncertainty quantification seem to be driven by model

type rather than purely by scientific field (see Figure 2B). As the sources of uncertainty in a particular model

type are likely to be consistent across fields, we propose a logical split for guidelines of good practice by

model type rather than the scientific field. By focusing on the model type and providing guidelines of good

practice, as detailed in Box 2 for a statistical model, it is possible to achieve greater consistency and

completeness in model-related uncertainty quantification across all scientific fields. Dialogue across fields

is key to achieving greater consistency.

An example of the benefits of cross-disciplinary dialogue can be to see commonalities in our challenges.

For instance, in some social sciences data ambiguity can be a challenge (in some cases it is not possible to

know if data are correct/truthful26–28), while in fields such as Health Science, tests for diseases can give false

positives or false negatives, and in fields like Ecology or Engineering, inaccuracy due to measurement or

observer errors are common.12,29 While the causes of these issues are field specific (and even case specific),

the impact they create for analysis and uncertainty quantification is shared. Both ambiguity and inaccuracy

lead to incorrect observations of the process of interest. By highlighting such commonalities, it is possible

to share solutions rather than the duplicating effort.
More complete uncertainty consideration

Across all the considered fields, we have documented the quantification of four sources of model uncer-

tainty. However, no field or model type alone achieves this. Our proposed good practice guidelines

(with specific examples in Box 2), informed by cross-field examples and practices, can support more com-

plete uncertainty consideration for all models used across the sciences. For each potential source of uncer-

tainty for each model type, we give indicate how uncertainty could be quantified, which in turn could be

adapted to the model at hand.

The guidelines in Box 2 leverage good practice from fields with specialized modeling repertoires to create

a comprehensive set of uncertainty practices that is relevant to all fields, particularly those using a diverse

modeling repertoire. An example of good practice from specialized fields is the quantification of uncer-

tainty from parameter estimation in Political and Health Science. Both fields have standard presentation

styles for this type of uncertainty, which is most commonly associated with some form of regression anal-

ysis. In Political Science, standard practice is to report standard errors (or occasionally t-values) for regres-

sion coefficients. It is also common to visualize uncertainty by plotting coefficients or marginal effects with

95% confidence intervals. The numerical and or visual presentation of 95% confidence intervals is standard

practice in Health Sciences. These accepted standards have led to an almost 100% success rate in reporting

uncertainty from parameter estimates in the papers we assessed for Political and Health Sciences (see Fig-

ure 1). In contrast, in Ecology, despite also using predominantly statistical models, there is no such universal

standard. Ecology research employs many different modeling tools and software platforms or packages,

including a number of user-defined models. This lack of consistent standard results in only a 60% reporting

rate of parameter uncertainty in Ecology. Implementing clearer minimum expectations from statistical

models like in Political or Health Science (as detailed in Box 2) could improve the quantification of
8 iScience 25, 105512, December 22, 2022
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parameter uncertainty in Ecology and other fields.We have based our recommendedmethods on currently

available tools and good practice from the seven considered fields, but we see these as working guidelines

that should be updated as new tools become available.

One area that should be addressed in greater detail is how to deal with uncertainty in a particular source

when quantification is implausible, impractical, or unnecessary. This frequently occurs and can arise for

many reasons including the complexity of the model, logistical constraints, lack of knowledge of the

form of uncertainty, or methodological constraints. In these situations, applying our framework could be

a useful method of systematically identifying what potential sources of uncertainty aremissing from the cur-

rent model, whether they could be incorporated or if they are quantified elsewhere. Researchers should

subsequently consider how failure to quantify uncertainty is likely to affect the study conclusions, this

approach could be a useful addition to the inquiry into COVID-19 modeling. This can include a detailed

discussion of uncertainty elements that are missing from the quantitative assessment. This approach would

be especially useful for fields that have a large component of uncertainty that is not quantitative or quantifi-

able, such as those with a large qualitative component. However, it should be noted that some methods to

quantify qualitative uncertainty do exist.12 It also allows a broadening of the uncertainty consideration

beyond that which can be easily given a numerical value.

Emphasis should be put on quality over quantity when applying these good practice guidelines. In theory, it

could be possible to tick all boxes of addressing uncertainty from the four sources, without ever quantifying

them correctly or thoroughly. The quality of the methods used to quantify uncertainty or how those

methods were reported is not something we addressed in our assessment of papers; however, it is some-

thing that should be considered in future assessments and when developing good practices.
Effective presentation of uncertainty

It is not sufficient to only quantify model-based uncertainty; it is also essential to communicate it. Model-

based uncertainty can be communicated in three primary ways: numerically, visually, or narratively. Across

fields, different combinations of these communication types were used (see Figure 3), ranging from 63%

visual-only communication in Neuroscience to >90% communication including numeric values for Health

and Political Sciences to a balanced use of all communication types individually and in combination in Evo-

lution and Oceanography.

While there exists a wide literature base discussing the most effective ways to communicate uncertainty,

these papers often focus on a non-academic audience of policy makers or the public.30–34 Their findings

suggest that openly communicating bounded or quantified uncertainty can increase trust in results32,33,35

and numeric and/or visual communication are more precise and effective than the textual presentation for

communicating the desired uncertainty level.2,31,36 Several findings from this existing literature can also be

useful for scientists when they are communicating uncertainty to an academic audience. We propose amin-

imumpresentation of quantified uncertainty as numeric values in scientific papers, either in themain text, in

the supplemental information; or in a supporting dataset published along with the paper. We recommend

numeric presentation for two reasons, first, to reduce the ambiguity that could come from textual or visual

presentation2,37,38 and second, to aid in the reusability of results. Numeric presentation of uncertainty is

essential for the reuse of results in systematic reviews or meta-analyses, or for reproducing the results in

the future and therefore is essential for the progress of research. We also recommend including the visual

presentation when feasible to aid interpretation.2,31,39 There are many ways in which uncertainty can be

presented visually, increasing the potential for an effective method to be found.2,38 Presenting model re-

sults visually can aid with the understanding of complex relationships but are not free from bias or misin-

terpretation, which is why we recommend a combination of numeric and visual communication.38,40 We

recommend as a best practice that the code used to produce uncertainty presentations is shared to

enhance the replicability and transparency of uncertainty quantification.

To effectively implement our communication recommendations, we advise developing a set of standard

uncertainty analyses and tools to implement them (either within existing software/packages or as post-pro-

cessing steps) so that every modeler can generate uncertainty metrics for their work. This would allow

easier production of visual or summary tabular representations of model-based uncertainties, which can

be included in the main manuscript text. This should then be coupled with larger tables of numeric values

in supplemental information including full uncertainty bounds for each quantifiable source from the source
iScience 25, 105512, December 22, 2022 9
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Black edged segments are our good practice recommendation of visual + numeric or visual + numeric + text.
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framework. Again, we can take inspiration on good practice for uncertainty communication from some of

the fields included in our audit. For example, Health Science presents uncertainty using numeric, visual, and

text methods 36% of the time and includes some numeric representation >95% of the time. An example of

good practice we encountered was Heisser et al.41 who coupled visual presentation with numeric bounds in

Figure 3.41 In contrast, other fields such as Climate Science and Neuroscience report uncertainty numeri-

cally less than 50% of the time. These fields can learn from standard practice and examples from Health

Science to improve their own uncertainty communication. The transferability of good practice will depend

somewhat on the model used, for example, the visual presentation of parameter uncertainty for a model

with greater than 100 parameters will not be practical. However, inspiration can still be taken to improve

the communication of uncertainty when the presentation is practical.

OUTSTANDING CHALLENGES

In addition to the opportunities for improvement identified in the section above, we also note shared

outstanding challenges to effective and comprehensive quantification of model-based uncertainty that

spans the included fields and model types. These challenges are yet to have satisfactory solutions for

any field. We discuss each challenge in detail below and propose some next steps for the research com-

munity to create a path to overcome them.
10 iScience 25, 105512, December 22, 2022
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Input data uncertainty

Across all fields assessed here, the source of uncertainty reported least often is for the data sources. Un-

certainty from explanatory variables was quantified and reported <25% of the time and uncertainty from

the response was reported <52% of the time across fields (see Figure 1). The slightly higher reporting

rate of uncertainty in the response is driven by greater reporting for dynamical models (see Figure 2).

This is because responses in these models are rarely in the form of input data, instead being predictions

or validation data. It is the quantification and reporting of uncertainty arising from input data (observed

data used as inputs to a model) that we identified as a particular challenge, but the consequences of

ignoring it can be severe.48 Uncertainty can enter the modeling process from input data (both the response

and explanatory variables) through random noise, unknown measurement or observation errors, or missed

processes that could lead to imprecise predictions. We identified three key challenges that are preventing

the quantification of input data uncertainty. The first is logistics, as it is not always possible to obtain suf-

ficient measurements to be able to quantify uncertainty in particular variables. This is more common when

data are very costly or logistically challenging to collect. The second and third barriers are related and

comprise both a lack of knowledge of methods to quantify input data uncertainty and a lack of knowledge

of the impact of failing to quantify input data uncertainty in different situations.

Tools do exist to quantify or remove most of these sources of uncertainty. There is a long history of

using various error-in-variables models to account for uncertainty in the measurement of explanatory vari-

ables49–52 and international standards do exist,42 although it is suggested these standards may not be appli-

cable to highly complex models.12 These models are supported by detailed theory in relation to linear

models52,53 and some non-linear models49,54 and there is a myriad of options of models to quantify this

type of uncertainty or bias. Models also exist to quantify observation error in response and explanatory vari-

ables, through the mapping of observed data to an unobserved or latent state (state-space models), which

are widely used in demographic ecology.55 Despite the availability of these tools, our results show that gener-

ally across all included fields, it is not standard practice to employ them. Wide-scale implementation of such

methods has been hindered by the lack of knowledge of their practical applications, insufficient availability of

data, no rules of thumb for when errors will influence results in many cases, and not including such consider-

ations in standard statistical teaching. For response variables specifically, as mentioned in the introduction,

many standard statistical models already adequately account for this uncertainty provided uncertainty in the

response follows a normal distribution. This results in little reporting of uncertainty in the response for statistical

models, which largely is not an omission. We would go so far as to not recommend any extra consideration for

uncertainty in the response in these cases since it is adequately accounted for by the standard practice. How-

ever, it is still important to note that it is not always the case that these assumptions aremet. In some situations,

further consideration and explicit quantification may be required and yet omitted as it is not standard practice

to consider uncertainty in the response when checking for deviations from the assumptions of the model.

We suggest a single solution to all three barriers to our consideration of uncertainty in input data. We call for

further theoretical or simulation work exploring the impact of unquantified uncertainty in observed data in

different contexts, especially when repeat data collection is challenging/impossible. This work should be

coupled with better communication of the methods and easy platforms or packages to implement them. This

final step would open accessibility to a wider range of scientists even without a formal statistical background.
Model complexity/logistics (including machine learning and artificial intelligence)

Increased computing power, improvements in data collection technologies, and developments of machine

learning and artificial intelligence (AI) have allowed us to develop more complex statistical models of hard

to study systems and automatic algorithms to fit them. However, with these increases in complexity come

trade-offs in terms of quantification of model-related uncertainty and in interpretability, with many of these

complex models often being treated as a ‘‘black box.’’ In parallel, complex models are frequently required

in Climate Science and Oceanography to model the highly complex Earth system. Such models are often

the only insight we can have into the behavior of physical systems on earth and are the best we can achieve

with current tools. Using these complex models is therefore a crucial step in the progress of science.

However, it can be impossible, due to practical limitations, to quantify uncertainty in all parameters or input

data sources for highly complex models,56 for instance, the computing resources required to quantify sen-

sitivities for each parameter in a highly complex model could be beyond what is currently achievable. In

some cases, attempting to quantify uncertainty in all parameters can actually reduce the accuracy of the
iScience 25, 105512, December 22, 2022 11
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model, having the opposite effect on the intention.56 A trade-off can therefore be made in deciding how to

play off increased complexity against the assessment of uncertainty. In many cases, being more thorough

about uncertainty can mean doing worse in terms of accuracy—for example, increasing model resolution

may resolve a new process (e.g. eddies in the ocean) which means the result jumps out of the region where

an uncertainty analysis at lower resolution would have bounded the problem, but now falls close to where

the real truth lies. Therefore, caution should be exercised when trying to address all sources of uncertainty

in complex models and ensure we have the correct tools to achieve this successfully. The trade-off exists

between what we can now model and what we can interpret and quantify uncertainty for.

We suggest two solutions to the trade-off between model complexity and uncertainty quantification. The

first is to include a specific uncertainty section of all manuscripts potentially as a designated supplemental

information section. This uncertainty section would contain the discussion of the limits and assumptions of

the models in terms of uncertainty. A dedicated section would also give space to discuss the potential con-

sequences of any unquantified uncertainty, including reductions in accuracy or giving indications of which

elements could be expected to change. The second is to call for further research to improve methods for

quantifying uncertainty in complex models and model fitting algorithms, ensuring uncertainty quantifica-

tion keeps pace with model development.

Propagation/within paper consistency

Duringour audit, wenoted two issueswith thepropagation ofmodel uncertainty. The first waswithin themodels

in a paper, where we observed that in some papers with multiple analyses, uncertainty consideration was not

consistent across all models. This pattern was especially prominent for papers including multiple analysis types

within a single study, a more common occurrence in fields such as Ecology, Evolution, and Neuroscience. The

second was in the propagation of uncertainty in results into the final discussion and conclusions. Rarely did we

find that quantified uncertainty was propagated through into the discussion and conclusion ofmanuscripts. This

pattern was universal across all fields. Evenwhen uncertainty was reported earlier in themanuscript, conclusions

still were largely based on point estimates or mean patterns. Uncertainty that was mentioned in the discussion

sometimes focused on missing processes or caveats to conclusions rather than quantified uncertainty. Both of

these propagation issues can hinder the interpretation of the uncertainty associated with results.

We propose using our good practice guidelines for different model types to ensure consistency in uncer-

tainty consideration across all models in papers. Using a source-based framework for these guidelines

helps to identify where uncertainty enters the modeling process and therefore improves the propagation

of uncertainty. We also encourage journals to set an expectation for paper conclusions and discussion to

include references to model-based uncertainty. Currently, there can be trepidation among authors about

diluting their conclusions by incorporating uncertainty, especially due to the highly competitive publishing

and funding environment and the potential of public influence. Improving acceptance of transparent un-

certainty in scientific conclusions would be a way forward to propagation into final results.

Interdisciplinary working

It is increasingly recognized that an interdisciplinary approach is required to address many of the key ques-

tions facing society, including climate change, the biodiversity crisis, and global pandemics. Much of this

work revolves around statistical or mathematical modeling, often integrating approaches from multiple

disciplines. Quantification of uncertainty is essential for the effective application of this work to societal de-

cision-making, but the lack of a common framework for understanding uncertainty across fields makes it

difficult to assess uncertainty in complex multidisciplinary systems.57 We propose that our push for greater

consistency in the quantification of uncertainty across fields will facilitate better reporting of uncertainty in

interdisciplinary work, which we expect will aid interpretation and application by multiple audiences.

How much uncertainty consideration is enough?

It is not possible to account for all possible uncertainty in our studies,5 there will always be unknown un-

knowns that remain and known sources that for practical and well-considered reasons cannot be addressed

in a given study. However, we do need to ensure that we make best efforts to represent as much of the un-

certainty related to our results as we can and in the correct way. How we can achieve accurate uncertainty

representation without over complicating or diluting results, remains an open question. In relation to the

framework we present, we need to ask: are there times when explicit the quantification of all sources is actu-

ally not enough? Model-based uncertainty is not the only uncertainty associated with scientific work.
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Howmuch is enough will be case-specific and nuanced. It does not only depend on the type of model used

but also the aims and focus of the work, for example, a regression model of heart rate (response) as a func-

tion of age (explanatory) where the authors do not care about the distinction between ‘‘true’’ and

‘‘observed’’ heart rate would not require explicit the quantification of uncertainty in the response. In this

example, the main focus of the paper is on the relationship between age and heart rate (either observed

or true) there is a strong need to be very sure of relationship and the uncertainty in that parameter and this

need is satisfied because uncertainty from the response is accounted for in the estimation of the parameter

and its uncertainty. In contrast, there could be a case where authors want to make conclusions specifically

for the ‘‘true’’ value, not the ‘‘observation’’ and make predictions for it; for example, if managing a popu-

lation of endangered animals. Here it is essential to explicitly know how the observed counts map to true

population values, therefore requiring explicit quantification of uncertainty in the response. It can be

exceptionally challenging to tease apart these nuances from published papers because it is not always

explicit how the authors view each model component or how generalizable they intend their work to be.

Furthermore, the limits and assumptions of models used are frequently not discussed in sufficient detail.

We propose a solution to illuminate the aims and scope of different model-based analyses and encourage

authors to discuss all uncertainty in their work, even those elements that are not quantified. This would be

achieved by having a specific uncertainty section of all manuscripts, as also suggested to aid uncertainty

reporting for complex models. This section could include specific author statements on which sources of

uncertainty have been quantified and why, which elements are missing and what their impact might be,

as well as the intended scope of the work and any limitations. This would help readers to appreciate the

full uncertainty associated with the work and aid in the correct reuse, replication, or citing of any results.

Some fears exist in the academic community about being explicit about uncertainty in our work, assuming

that public or policy audiences might lose trust in results. Indeed, in some situations communicating uncer-

tainty can influence public perceptions negatively due to ambiguity aversion, such as with vaccine effective-

ness.34 However, there have also been several findings indicating users of official statistics and members of

the public can engage well with model-related uncertainty.2 Some have even demonstrated that a lack of

transparency around uncertainty can erode public trust,16,18,22,58 while communicating technical uncer-

tainty can have positive effects on credibility.59 Therefore, we should not shy away from reporting uncer-

tainties associated with our work but instead ensure we communicate them as fully and transparently as

possible and in an easy to interpret manner. We will never have full control over how our work will be

communicated by the media, read by the public, or used by policy makers. However, to have any chance

that the full nuances of our studies are considered, we must provide them. As a result, we must be clear but

also careful with how we communicate uncertainties associated with our work. Increasing transparency and

consistency of our uncertainty reporting could help improve public trust and aid policy maker decisions.38

Asmentioned in the introduction, uncertainty can enter the scientific process from amyriad of sources, with

model-associated uncertainty being just one. As a result, it would be possible to score perfectly using our

proposed source framework, quantifying all sources of model-based uncertainty in some way, but still have

results that are subject to large unquantified uncertainties. Furthermore, in our analyses, we made no judg-

ment about whether a certain method of quantifying uncertainty was the most appropriate or what impact

the quantification had on results; for example, whether results actually became less accurate in the pursuit

of better-quantified precision. Quality of uncertainty quantification will also be a crucial element in deter-

mining whether enough has been done in any given analysis. Simply ticking all boxes is not sufficient, good

practice for each must also be followed (see Box 2).17
RECOMMENDED WAYS FORWARD

Our analysis reveals a lack of consistency in uncertainty quantification within and between fields. The fact that

some fields do successfully account for uncertainties for certain model types and sources while others do not

indicate that it is disciplinary protocols or customs that have led us to this state. Our analysis also highlights the

potential for improvement. To reveal these previously unnoticed patterns, we had to translate the discipline-

specific terminology surroundingmodel development and uncertainty quantification into a common language.

We make ten concrete recommendations for current practice, future work, and general research recom-

mendations. The first two categories are aimed at the modeling community and the third is aimed more

broadly, including at scientific publications and funders.
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Recommendations for standard practice in quantifying model uncertainty:

1. Use the source framework as a structured tool for considering model uncertainty. Where uncer-

tainties from the sources can and should be quantified, do so. Where it is not feasible or practical

to quantify a particular source of uncertainty, instead include a theoretical discussion and acknowl-

edgment of the missing uncertainty, why it is missing, and consideration of what impact it may have

on the results reported.

2. Follow our proposed interdisciplinary good practice guidelines for uncertainty quantification (see

Box 2).

3. Present model uncertainty as clearly as possible using at minimum some numeric presentation to aid

reuse and reduce ambiguity. Should be combined with visual presentation when feasible to aid inter-

pretability.

4. Propagate model uncertainties into the conclusions drawn from the work.

Recommended future research priorities:

5. Develop tools and guidance on how to identify when uncertainty from input data is important.

6. Couple modeling advances such as increased complexity or AI and machine learning with further

theoretical work on how to quantify and propagate the uncertainties associated with such methods.

7. Conduct further research into the influence and importance of the different sources of uncertainty for

final results and conclusions across multiple modeling types and contexts.

8. Expand our uncertainty framework to include areas beyond quantitative models. Particularly, do this

in the context of a broader range of social sciences to better capture their unique issues in relation to

uncertainty.

General recommendations:

9. Where uncertainty cannot yet be quantified and its impact is not known, be transparent about these

limitations, especially when drawing conclusions. Be accepting of conclusions that include explicit

recognition of model uncertainty

10. Make it standard to have transparent and easy access to quantified model uncertainties in all man-

uscripts, e.g. through standard dedicated supplemental information sections

Recommendations 1, 2, 3, 4, and 9 can be implemented immediately but recommendations 5, 6, 7, 8, and 10

require long-term planning.
LIMITATIONS OF THE STUDY

Although we employed a systematic approach to our audit of papers, alongside training, calibration, and

repeated consistency checks, there are likely to remain small between reviewer deviations in scoring of

papers. Unfortunately, we could not audit all papers that we aimed to at the beginning of this project.

Time constraints of reviewers, particularly influenced by the coronavirus pandemic, led to different

numbers of papers being audited per field. This means our final coverage was not equal across the

different fields in this study. However, as the results are summarised as percentages and still cover a

meaningful number of papers per field (minimum 34), they remain comparable. As mentioned in the

main manuscript, our study included only a single representative of social sciences (Political Science),

we strongly encourage further work expanding the application of our framework to a wider array of social

sciences and to uncertainty types beyond quantitative uncertainty. In addition, this current work could

not assess the quality or appropriateness of the reported uncertainties or what the consequences of

omissions are for reported results.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105512.
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